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Abstract. Reflection matrices with the correct space–time symmetry properties may be
obtained from the standard Maxwell boundary conditions only when the constitutive relations
for the D andH fields satisfy covariance requirements. In this paper we present the first
application of covariant multipole forms forD andH, to the order of electric quadrupole and
magnetic dipole, to a magnetic crystal in order to compare the predictions obtained from this
theory with recent experimental results. In particular, the theory is used to determine the Fresnel
reflection amplitudes for antiferromagnetic Cr2O3 when a monochromatic plane light wave is
incident normally from a vacuum on a crystal face perpendicular first to theC3 axis and then to
theC2 axis. The theory agrees well with experiment. In addition, it reveals a novel relationship
between certain components of the frequency-dependent magnetoelectric tensor, which, with
the aid of transmission and reflection data, would enable the surface and bulk contributions in
reflection to be distinguished.

1. Introduction

Theories of reflection from spatially dispersive media have been shown to be sensitive
both to the form assumed for the constitutive relations, which are often of an empirical or
phenomenological nature, and to the boundary conditions that are used when matching the
light wave fields at the interface [1–6]. However, an acid test for distinguishing between
the conflicting results of the various theories is that the reflection matrix for a particular
system should exhibit the form that is prescribed by space–time symmetry [7, 8]. It has been
shown for non-magnetic media [6, 9] that reflection matrices which meet this requirement
can be obtained from the standard Maxwell boundary conditions [10] only when theD and
H fields are taken in covariant form. This problem is discussed in a recent article [11]
where the covariant multipole forms forD andH that apply to non-magnetic and magnetic
media are derived in the electric quadrupole-magnetic dipole approximation in terms of the
macroscopic property tensors of the medium.

In this paper use is made for the first time of the magnetic forms of the covariantD
andH fields to produce a theory of reflection from antiferromagnetic Cr2O3, so providing
a quantitative basis for describing the experimental observations of Krichevtsovet al [12],
which these authors, in the absence of such a theory, interpreted phenomenologically.
Although our theory is macroscopic and as such does not allow for microscopic surface
effects [13], it yields a relationship between the components of the magnetoelectric tensor
which has not previously been noted and which, with the aid of reflection and transmission
data, would permit the surface and bulk contributions in reflection to be distinguished. In
addition, our theory provides an important test of the validity of the covariant multipole
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forms for theD andH fields for a magnetic medium, which have only recently been
derived [11].

We begin in section 2 by considering wave propagation in Cr2O3, since the
eigenpolarizations that the medium supports must necessarily be determined before boundary
conditions can be applied. In order to compare our theoretical results with the experimental
data of Krichevtsovet al for a single-domain crystal of antiferromagnetic Cr2O3 [12],
we derive in section 3 the reflection matrices for the propagation directions used in [12].
This is done by applying the standard Maxwell boundary conditions at the vacuum–crystal
interface and by taking theD andH fields in the medium in covariant form. In section
4 the predictions based on our theory are shown to be in agreement with experiment [12].
The discussion follows in section 5.

2. Wave propagation in Cr2O3

The equation that describes the propagation of a plane electromagnetic wave with an electric
field of the form

E = E(0) exp{iω(ñσ · r/c − t)} (1)

in an optically inactive antiferromagnet such as Cr2O3 is [14][
ñ2(σασβ − δαβ)+ δαβ + ε−1

0 α̃αβ + µ0cñσγ Ãαβγ
]
E
(0)
β = 0 (2)

whereñ is the complex refractive index for the polarization state described by the amplitude
E(0) when propagation is in the direction of the unit wave-normalσ, ε−1

0 α̃αβ is the electric
susceptibility and

Ãαβγ = −εαγ δG̃βδ − εβγ δG̃αδ + 1
2ω
(
ã′αβγ + ã′βαγ

) = Ãβαγ . (3)

In (2) and (3),α̃αβ , G̃αβ and ã′αβγ are macroscopic property tensors of the medium and
are complex (denoted by a tilde) to allow for absorption. They describe the induction of
multipole polarization densities as follows [14]:

Pα = α̃αβEβ + 1
2ω
−1ã′αβγ∇γ Ėβ + G̃αβBβ + . . . (4)

Qαβ = ω−1ã′γαβĖγ + . . . (5)

Mα = G̃βαEβ + . . . . (6)

An earlier theory of wave propagation in Cr2O3 has been presented by Hornreich
and Shtrikman [15], who were the first to recognize the necessity for including electric
quadrupole contributions in addition to those of magnetic dipoles. However, their theory
yields expressions for the polarization states and refractive indices of the characteristic waves
(eigenpolarizations) propagating along a two-fold rotation axis in Cr2O3 which differ from
those that are obtained from (2) [14]. The problem arises because they assume that their
electric quadrupole tensorγ ′′ij l , which is symmetric in the interchange of the subscriptsi and
j , is also symmetric in the interchange of the subscriptsj andl (see equation (26) in [15]).
It is readily verified from the quantum-mechanical expression forγ ′′ij l in their equation (86a)
that this assumption is erroneous. We therefore make use of (2) to determine the refractive
indices and corresponding eigenpolarizations that propagate in Cr2O3 when deriving the
reflection matrices in the following section.
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3. Normal-incidence reflection from Cr2O3

In order to apply our theory to the experimental results of Krichevtsovet al [12] we consider
reflection at normal incidence from a single-domain crystal of Cr2O3 in a vacuum when the
light path is parallel first to the optic axis (C3 axis) and then to theC2 axis. The crystal
properties are specified relative to Cartesian crystallographic axesx, y, z where, following
Birss [16], we takeC3 ‖ z and C2 ‖ x. A laboratory reference frame which coincides
with the crystallographic system is used to describe the incident, reflected and transmitted
waves, for which the electric fields have the form in (1). Standard Maxwell boundary
conditions are applied to the light wave fields at the vacuum–crystal interface. Although
these boundary conditions place restrictions on the normal components ofD andB and also
on the tangential components ofE andH, they yield at most four independent relationships
which can be obtained from the conditions on theE andH fields [17]. These relationships
may be rewritten in the form [18](

E(0)r
)
j
= Rjk

(
E
(0)
i

)
k

(7)

whereRjk is the 2×2 reflection matrix that relates the Cartesian components of the reflected
electric field amplitudeE(0)

r to those of the incident electric field amplitudeE(0)
i . Various

forms can be obtained forRjk which depend on the choice that is made for theD andH
fields. However, time-reversal symmetry (reciprocity) imposes the following condition on
the matrices that describe normal-incidence reflection from a sample in two time-conjugated
equilibrium states(t) and(−t) [7]:

Rjk(t) = Rkj (−t). (8)

We have found that the relationship in (8) is satisfied only when covariantD and H
fields are used in the standard Maxwell boundary conditions. For an optically inactive
antiferromagnet such as Cr2O3 [16] the appropriate forms are [11]

Dα =
[
ε0δαβ + α̃αβ − 1

3i
(
ã′αβγ + ã′βαγ + ã′γαβ

)∇γ ]Eβ + T̃αβBβ (9)

Hα = −T̃βαEβ + µ−1
0 δαβBβ (10)

where

T̃αβ = G̃αβ − 1
3δαβG̃γ γ − 1

6ωεβγ δã
′
γ δα. (11)

As antiferromagnetic Cr2O3 has magnetic point group symmetry3m [19], we find from
Birss’s tables [16] and the symmetry property [14]

ã′αβγ = ã′αγβ (12)

that the non-vanishing components of the polarizability tensorsα̃αβ , G̃αβ , and ã′αβγ are

α̃xx = α̃yy, α̃zz

G̃xx = G̃yy, G̃zz

ã′xyz = ã′xzy = −ã′yxz = −ã′yzx
ã′xxx = −ã′yyx = −ã′yxy = −ã′xyy.

(13)

Although G̃αβ and ã′αβγ are origin-dependent tensors, the combinations in (3) and (11),
which enter expressions for observables in transmission [14] and reflection [11] respectively,
can be shown to be origin-independent (see [11] for details), as is required of a physical
property.
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3.1. Light path parallel toz axis (optic axis)

For propagation parallel to the optic axis, the unit wave normalσ = (0, 0, 1). We then find
from (3) and (13) that the propagation equation (2) can be written in component form as −ñ2+ ε−1

0 ε̃x 0 0
0 −ñ2+ ε−1

0 ε̃x 0
0 0 ε−1

0 ε̃z

 E(0)x
E(0)y
E(0)z

 = 0 (14)

where ε̃k = ε0 + α̃kk. Equation (14) shows that the characteristic waves travelling along
the z axis in the crystal are polarized parallel to thex andy axes and have corresponding
refractive indices

ñx = ñy = (ε−1
0 ε̃x)

1
2 . (15)

As the tensors̃Gαβ and ã′αβγ do not enter (14), the magnetoelectric properties of Cr2O3

cannot be determined in transmission when the light path is along the optic axis [14].
TheH fields that are associated with the two characteristic waves in the crystal may

be determined from (10), (11) and (13) and have the following amplitude components:

E ‖ x : H(0)
x = T̃xxE(0)x , H (0)

y = (µ0c)
−1ñxE

(0)
y (16)

E ‖ y : H(0)
x = −(µ0c)

−1ñxE
(0)
y , H (0)

y = T̃yyE(0)y (17)

where

T̃xx = T̃yy = 1
3

(
G̃zz − G̃xx − 1

2ωã
′
xyz

)
(18)

and use has also been made of (15) and the Maxwell equation

∇ ×E = −Ḃ. (19)

Application of the Maxwell condition of continuity to the tangential components of
theE andH fields of the incident, reflected and transmitted waves at the vacuum–crystal
interface then yields the reflection matrix

R(z) =
[
(1− ñx)/(1+ ñx) −2µ0cT̃xx/(1+ ñx)2
2µ0cT̃xx/(1+ ñx)2 (1− ñx)/(1+ ñx)

]
(20)

in which terms that are quadratic iñTxx have been neglected. BecauseT̃xx is time-odd, the
matrix in (20) satisfies the reciprocity condition in (8).

3.2. Light path parallel tox axis

We have previously shown [14] that for propagation along theC2 axis in Cr2O3 the refractive
indices and polarization states of the two characteristic waves are

wave 1:

ñ1 = (ε−1
0 ε̃y)

1
2
[
1+ 1

2µ0C̃
2/(ε̃y − ε̃z)

]∓ 1
2µ0cωã

′
xxx (21)

E(0)z /E
(0)
y = C̃(µ0ε̃y)

1
2 /(ε̃y − ε̃z) (22)

wave 2:

ñ2 = (ε−1
0 ε̃z)

1
2
[
1− 1

2µ0C̃
2/(ε̃y − ε̃z)

]
(23)

E(0)y /E
(0)
z = −C̃(µ0ε̃z)

1
2 /(ε̃y − ε̃z) (24)
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where

ε̃k = ε0+ α̃kk (25)

C̃ = G̃zz − G̃xx − 1
2ωã

′
xyz = 3T̃xx . (26)

From (10), (11), (13) and (19) it follows that for propagation in thex direction the
amplitude components of theH field are

H(0)
y = −ñ(µ0c)

−1E(0)z + T̃yyE(0)y (27)

H(0)
z = ñ(µ0c)

−1E(0)y + T̃zzE(0)z (28)

where

T̃zz = 2
3

(
G̃xx − G̃zz + 1

2ωã
′
xyz

) = −2T̃yy = −2T̃xx . (29)

The appropriate forms of (27) and (28) for the characteristic waves 1 and 2 may be
determined with the aid of (21)–(26).

The boundary conditions on theE andH fields at the interface then yield, to first order
in T̃xx , the reflection matrix

R(x) =
[
(1− ñy)/(1+ ñy) R̃yz

R̃zy (1− ñz)/(1+ ñz)
]

(30)

where

ñy = ñx = (ε−1
0 ε̃x)

1
2 (31)

ñz = (ε−1
0 ε̃z)

1
2 (32)

R̃yz = −R̃zy = 2µ0cT̃xx(2ñx − ñz)/(ñx + ñz)(1+ ñx)(1+ ñz). (33)

It follows from (33) that R̃yz and R̃zy change sign under time reversal becauseT̃xx is
time-odd and hence that the matrix in (30) satisfies the reciprocity requirement in (8).

4. Comparison with experiment

The properties predicted by our theory for reflection from Cr2O3 are most easily compared
with experiment [12] if we assumẽnx = ñz. (This is a reasonable approximation since the
measured value for the birefringence [12] isnz − nx = 5.8× 10−2 and also sincenz − nx
does not enter our results in (20) or (30)–(33).) We then find from (30), (31) and (33) that

R(x) =
[
(1− ñx)/(1+ ñx) µ0cT̃xx/(1+ ñx)2
−µ0cT̃xx/(1+ ñx)2 (1− ñx)/(1+ ñx)

]
. (34)

As the off-diagonal elements in the reflection matrices in (20) and (34) are linear in
the time-odd propertyT̃xx , the rotation and circular dichroism in the reflected beam are
non-reciprocal. This has been confirmed experimentally [12].

Inspection of (20) and (34) shows that for incident linearly polarized light of azimuth
φi = 0◦ andφi = 90◦, the rotation1φ for σ ‖ z is twice that forσ ‖ x. Experiment [12],
however, yields the ratio(1φ)z/(1φ)x ' 1.6. The difference between this value and the
predicted value of two is probably due to the presence of microscopic surface effects [13]
which are not accounted for in our macroscopic theory.

Because the off-diagonal elements in (20) are of opposite sign to those in (34), the
rotations whenφi = 0◦, 90◦ and the circular dichroism forσ ‖ z are of opposite sign, for
a given spin form of Cr2O3, to the corresponding properties whenσ ‖ x. This is observed
in practice [12].
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It can also be shown from (20) and (34), in agreement with experiment [12], that for
σ ‖ x and an azimuthφi = 45◦, the difference in the rotations for the two spin forms of
Cr2O3 is equal in magnitude to the rotation for either time form whenσ ‖ z.

5. Discussion

Several interesting observations follow from the multipole theory presented in this paper. As
shown in [11], the frequency-dependent magnetoelectric tensorT̃αβ is an origin-independent
combination of magnetic dipole and electric quadrupole tensors. The latter contribution
vanishes in the low-frequency limit(ω→ 0) where the magnetoelectric effect is described
by the magnetic dipole tensor̃Gαβ alone [20].

A novel result, which has not previously been noted, is the relationship in (29) between
the components of the frequency-dependent magnetoelectric tensor for Cr2O3, namely

T̃zz = −2T̃xx = −2T̃yy = 2
3

(
G̃xx − G̃zz + 1

2ωã
′
xyz

)
which shows that forT̃αβ in the form

T̃αβ = t ′αβ + it ′′αβ (35)

the expected ratio of components for the real and the imaginary parts (t ′αβ and t ′′αβ ,
respectively) is

t ′zz/t
′
xx = t ′′zz/t ′′xx = −2. (36)

The components oft ′αβ and t ′′αβ have been evaluated for Cr2O3 from measurements in
reflection of the change in azimuth and the circular dichroism, respectively [12], and these
values yield

t ′zz/t
′
xx = t ′′zz/t ′′xx ' −2.4. (37)

Again a possible explanation for the difference between the theoretical and observed values
for these ratios is the existence of surface effects which are of a microscopic nature and may
be attributed to the rotating power of the first ferromagnetic layer in an antiferromagnetic
crystal [13]. However, these effects are absent in transmission, and it follows from (22),
(24) and (26) that the bulk value for̃Txx , evaluated from the rotation of the optical indicatrix
when propagation is along theC2 axis in Cr2O3, could be used to obtain an estimate of the
surface contributions tõTxx and T̃zz in reflection.

It can be shown from the covariantD andH fields in (9)–(11) and from Birss’s tables
[16] that cubic antiferromagnets belonging to the symmetry classesm3, 432, 43m, m3m,
m3m andm3m may not exhibit bulk magnetic effects induced by a time-harmonic wave.
Consequently these crystals may be suitable for the direct observation of surface effects in
reflection [13].

Finally, by using the new covariant multipole forms for the constitutive relations for a
magnetic medium [11], we have produced a quantitative theory of reflection from Cr2O3

which satisfies the reciprocity condition in (8) and which also yields results that agree well
with experiment [12].
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